QCD at the Forward Physics Facility @ CERN

Maria Vittoria Garzelli
in collaboration with Jonathan Feng and Felix Kling
and further input from
Weidong Bai, Milind Diwan, Yu-Seon Jeong, Mary-Hall Reno
+ PROSA collaboration

Snowmass 2021 Community Planning Meeting - Virtual October 5th - 8th. 2020

The Forward Physics Facility @ CERN

- * Exploit beams of particles produced in the interactions points at the LHC, propagating in the direction tangent to the beam line.
- * Let the beam propagating for some distance, until they interact with the material of one or more detectors.

Questions:

- at which angle positioning the detector(s) ? (6 $\lesssim \eta \lesssim$ 10)
- how far from the IP ? (~ 500 m near ATLAS IP or less near CMS IP)
- which detection technology and materials?
- besides exploiting pp HL-LHC runs, shall one consider pA and AA runs?
- ⇒ The answers partly depend on the physics one wants to explore, partly on the morphology of the experimental environment.

Experience built on top of experiments active during Run-3 will help (Faser- ν , FASER....).

Characterizing the beam

- * At distance far enough from the interaction point, after optical elements, the beam is composed by neutrinos and muons.
- * Neutrinos come mainly from the decays of various mesons and baryons (light-flavoured and heavy-flavoured) produced at the IP.
- * How to characterize the beam ?
- \Rightarrow Predictions for the energy and angular spectra of the ν_e , ν_μ , ν_τ components, accompanied by uncertatinties of perturbative and non-perturbative nature.

A-posteriori complication:

 ν could oscillate and disappear during propagation!

Examples of MC predictions of forward $(\nu + \bar{\nu})$ fluxes

Estimated number of neutrinos impinging on the transverse area of the FASER- ν detector.

Uncertainty band: envelope of the central predictions of different MC.

How to estimate a more reliable uncertainty band?

Non-perturbative effects potentially affecting predictions for ν beams at the FPF

- * Modelling of PDFs (at various stages of the simulation)
- * Modelling of MPI (partly perturbative)
- * Modelling of hadronization (including color reconnection effects)
- * Heavy-quark treatment/mass values/interpretation
- * Factorization framework
- * Modelling of diffraction
- \Rightarrow Models and tunes implemented in MC event generators
 - + non-perturbative parameters in the hard-scattering

Long-standing issue: difficulties to simultaneously reproduce the experimental charged particle multiplicities (and other observables) at small and large pseudorapidities.

Parton Distribution Functions

- * Forward ν production in pp collisions implies sensitivity to PDFs in the regions $10^{-8} \lesssim x \lesssim 10^{-5}$ and $10^{-1} \lesssim x \lesssim 1$
- * These are the regions where present PDF fits are less constrained!
- * Partly constrained by LHCb heavy-flavour production data (2 < y < 4.5), but PDFs still extrapolated to the more extreme x values.

Questions:

- * Is the DGLAP formalism in collinear factorization appropriate enough to describe proton content at low x, low Q^2 ?
- * How to model higher-twist effects?
- \ast Do we need to switch to more general factorization and evolution frameworks including gluon saturation ?
- \Rightarrow Partial overlap with x regions explorable at EIC (large x) and LHeC (small x).

Recent results on gluon PDFs

- * Comparison between NLO PDF fits incorporating or not LHCb open heavy flavour data (left).
- * Effects of cuts of inclusive DIS data on the ABMP gluon distribution (right).

Multiple Partonic Interactions

- * Interactions at lower x with respect to the hard-scattering. Tame the divergences in perturbative $2 \to 2$ scatterings.
- * Dual Parton Scattering often modelled with pocket formulas using $\sigma_{\it eff}$ parameter.

Questions:

- How to go beyond the present treatment ?
- PDFs in MPI?
- rescattering (and non-trivial color flows) in MPI ?
- how to implement color reconnection effects (many color strings overlapping in physical space) ?

Hadronization

- * String and cluster hadronization mechanisms available in Monte Carlo event generators.
- * Color connections and reconnection effects.
- * Questions:

up to which extent is it meaningful to apply the results of fits of e^+e^- data to pp collisions (gluon jets/initial state hadrons)?

⇒ Asymmetries in forward production of mesons with opposite charge may give hints on beam remnant effects in the hadronization mechanisms.

9 / 12

Primordial k_T

- * Introduced in MC generators in collinear factorization, to account for Fermi motion of partons confined in the proton.
- * Average $\langle k_T \rangle$ value tuned to experimental data (Drell-Yan production at low p_T).
- * The result may depend on the perturbative accuracy of the simulation: a large intrinsic $\langle k_T \rangle$ can mimic missing higher-order perturbative effects!

Question:

Is it enough to improve the accuracy of the computation in the collinear factorization framework (e.g. NNLO, better PDFs/FFs, etc...), or shall we go beyond collinear factorization?

Conclusions

- * Characterizing and quantifying the non-perturbative uncertainties affecting forward ν beams is crucial to be able to use these beams for further SM and BSM studies (e.g. ν oscillations and nuclear PDF extraction from ν -induced DIS in the detector).
- * Measuring/inferring the beam composition at different angles and energies will allow for a better understanding of non-perturbative mechanisms.
- * Open issue:

how to distinguish the relative role of different non-perturbative mechanisms? Modifying one element can compensate for the effect of other missing ones!

⇒ Importance of the sinergy between different experiments.

Next discussion opportunities on the FPF

- * Talks in the Snowmass CPM-meeting session #138 "Synergy of Astroparticle and Collider Physics" tomorrow.
- * FPF Kickoff Meeting, via zoom on November 9-10, 2020:

https://indico.cern.ch/event/955956/overview

- Registrations open.
- Snowmass inter-frontier participation:
 SM/BSM/astroparticle and collider phenomenologists
- Call for abstracts from these communities open until October, 25th.
- ⇒ Discussions and work in preparation of the Snowmass report and a practical proposal for the facility.

Thank you for your attention!